STORMWATER MANAGEMENT REPORT

for

30 CROSS STREET

Block 113, Lot Nos. 7, 7.01, 7.02, 7.03, 8, 8.01, and 8.02 (Bogota) Block 152.01, Lot Nos. 1, 1.01, and 2 (Ridgefield Park) Borough of Bogota and Village of Ridgefield Park, Bergen County, NJ

Prepared For:

Hampshire Venture Partners, LLC 22 Maple Avenue Morristown, NJ 07960

Prepared By:

Langan Engineering and Environmental Services, Inc. 989 Lenox Drive Suite 124 Lawrenceville, NJ 08648 NJ Certificate of Authorization No: 24GA27996400

Kevin J. Webb, PE Professional Engineer License No. 24GE04075100

03 March 2021 Project Number 130148001

989 Lenox Drive, Suite 124Lawrenceville, NJ 08648T: 609.282.8000F: 609.282.8001www.langan.comNew Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • Ohio • Florida • Texas • Colorado • Arizona • Washington • California

Athens • Calgary • Dubai • London • Panama

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1. Purpose of Report	1
	1.2. Project Description	1
	1.3. Hydrologic Methodologies	2
	1.4. Water Quantity Design	2
	1.5. Water Quality Design	2
	1.6. Groundwater Recharge Design	3
2.0	PRE-DEVELOPMENT CONDITIONS	3
	2.1. Land use and Topography	3
	2.2. Pre-Developed Watershed	3
3.0	POST-DEVELOPMENT CONDITIONS	4
	3.1. Stormwater Management Facilities	4
	3.2. Post-Development Watershed	4
	3.3. Stormwater Quality	5
	3.4. Stormwater Conveyance	6
	3.5. Soil Erosion and Sediment Control	6
	3.6. Conclusion	6

LIST OF FIGURES

- Figure 1Site Location MapFigure 2Vicinity Map
- Figure 3 Aerial Photograph Map
- Figure 4 FEMA NFHL Map
- Figure 5 Soils Map

LIST OF APPENDICES

Appendix A	Water Quality Analysis
Appendix B	Storm Sewer Conveyance Calculations

LIST OF DRAWINGS

CG101	Grading & Drainage Plan
WB101	Pre-Developed Watershed Plan
WB102	Post-Developed Watershed Plan
WB103	Sub-Watershed Plan

\langan.com\data\LAW\data0\130148001\Project Data_Discipline\Site Civil\Reports\Stormwater Management Report\Bogota Stormwater Management Report.docx

1.0 INTRODUCTION

1.1. Purpose of Report

The purpose of this report is to present the criteria and methods utilized in the design of the storm sewer collection system for the project known as 30 Cross Street. This report has been prepared in conjunction with plans titled "Preliminary and Final Site Plans for 30 Cross Street," prepared by Langan Engineering dated February 19, 2021, and addresses the stormwater management requirements according to the following:

- Borough of Bogota and Village of Ridgefield Park;
- Bergen County;
- Standards for Soil Erosion and Sediment Control in New Jersey; and
- N.J.A.C. 7:8 and the NJDEP New Jersey Stormwater Best Management Practices Manual.

1.2. Project Description

The project consists of the redevelopment of the approximately ± 12 acre site located at 30 Cross Street in Borough of Bogota and Village of Ridgefield Park. The site consists of seven lots identified as Block 113, Lots 7, 7.01, 7.02, 7.03, 8, 8.01, and 8.02, in the Borough of Bogota, and three lots identified as Block 152.01, Lots 1, 1.01, and 2, in the Village of Ridgefield Park. The site is bounded by the Hackensack River to the west; an industrial facility and an apartment complex to the north; Industrial Avenue, an active rail line, and an industrial facility to the east; and Interstate 80 to the south. The site is currently known as the Bogota Golf Center and is occupied by a building containing a golf and sports center, an attached multi-story driving range, and a car parking lot.

In the post-developed condition, two warehouses are proposed. Building 1, located in Ridgefield Park, has a building area of 98,400 square feet with 11 loading docks and 100 car parking spaces. Building 2, located in Bogota, has a building area of 89,130 square feet with 10 loading docks and 154 car parking spaces. In addition, associated site improvements including utilities, stormwater conveyance, landscaping, and lighting will be included in the proposed redevelopment.

A site location map has been provided in the Figures section of this report for reference.

1.3. Hydrologic Methodologies

This report was prepared using the SCS Method as contained in the USDA Soil Conservation Service Publication Technical Release No. 55 (TR-55) "Urban Hydrology for Small Watersheds". TR-55 outlines procedures for calculating stormwater runoff volumes and rates resulting from precipitation events at the project site. The TR-55 procedure simulates runoff from a watershed using the drainage area, curve number (CN), and time of concentration (Tc). Drainage areas were determined based on topography and stormwater runoff conveyance. CN values were determined based on the soil types and land cover types within each watershed. Tc values were determined based on land cover and the flow path from the hydraulically most distant point of the watershed.

The soil boundaries for the soil types were determined by the NRCS Web Soil Survey. A copy of the Soil Survey has been provided in the Figures section of this report. The following soil types are located at the site:

Urban Land, (UR) – Hydrologic Soil Group D

The hydrologic model was analyzed and designed with the HydroCAD software program.

1.4. Water Quantity Design

The site's runoff discharges to the Hackensack River, which is a tidal waterbody. Accordingly, the development is not subject to peak runoff reduction rates according to NJAC 7:8-5.4(a)3.iv. However, stormwater quantity measures are required to comply with the Standards for Soil Erosion and Sediment Control (SESC) in New Jersey. Hydrographs have been generated utilizing the SCS Unit hydrograph and regional rainfall data for Bergen County (as contained in the New Jersey Department of Agriculture Technical Bulletin 2004-4.0 (last revised in August 2012). Hydrographs for impervious and pervious areas have been calculated separately, according to NJAC 7:8-5.6(a)4.

1.5. Water Quality Design

Stormwater quality management measures for the site were designed using the pollutant removal requirements set forth in the NJDEP Stormwater Best Management Practices Manual. Runoff volume generated by the water quality design storm, which is a 1.25-inch/2-hour variable rate rainfall event and whose distribution is presented in the Appendix, must be treated by utilizing stormwater management methods to reduce the

developed site's average annual total suspended solids (TSS) load by at least 80% for runoff from new impervious areas and by at least 50% from existing impervious areas.

1.6. Groundwater Recharge Design

The project is a redevelopment of a site within Planning Area 1 and is, therefore, exempt from the groundwater recharge requirements according to NJAC 7:8-5.4(a)2.ii. Furthermore, the entire project site is subject to a Deed Notice and a Classification Exception Area to address soil and groundwater contamination associated with prior industrial uses and the presence of historic fill at the site. Due to these existing conditions, no proposed groundwater recharge measures are proposed pursuant to NJAC 7:8-5.4(a)2.iii., as promoting groundwater recharge at the site would be inconsistent with the capping remedy and the engineering and institutional controls approved as part of the Remedial Action Permit.

2.0 PRE-DEVELOPMENT CONDITIONS

2.1. Land use and Topography

Runoff from the existing Bogota Golf Center Main Building, multi-story driving range platform, and car parking lot drains through the on-site storm sewer network to the existing 24-inch outfall, out to the Hackensack River. The drainage area to the existing outfall is approximately 2.85 acres, which includes approximately 2.76 AC. of existing impervious coverage. Runoff from the southeast section of the driving range and a portion of Industrial Avenue flows southward towards a tributary at the southeast corner of the lots, which also discharges to the river nearby. The remainder of the site drains towards the Hackensack River.

2.2. Pre-Developed Watershed

A plan entitled "Pre-Developed Watershed Plan" is included in the drawings section of this report. This plan delineates the present drainage areas and the time of concentration flow path to the analysis points. Runoff hydrographs have been calculated for each area shown under its present conditions to determine present drainage characteristics for the portions of the site under development.

The present drainage areas are defined as follows:

Pre-Developed Watershed A – Watershed A drains through the Bogota Golf Center onsite storm sewer system and out the existing outfall to the Hackensack River.
Pre-Developed Watershed B – Watershed B drains west to the Hackensack River.
Pre-Developed Watershed C – Watershed C drains south into the unnamed tributary on the southeast corner of the site. The tributary eventually flows to the Hackensack River.

3.0 POST-DEVELOPMENT CONDITIONS

3.1. Stormwater Management Facilities

When fully constructed, the redevelopment will consist of two warehouses. The runoff from Building 2, will be captured by a proposed on-site storm network and will connect to the existing outfall to the Hackensack River. The runoff from Building 1, will be captured by a separate proposed on-site storm network and will discharge through a newly proposed outfall to the Hackensack River south of the existing outfall.

3.2. Post-Development Watershed

A plan titled "Post-Development Watershed Plan" is included in the drawings section of this report. This plan delineates the developed drainage areas and the time of concentration flow path to the analysis points. Runoff hydrographs have been calculated for each area shown under its developed conditions to determine developed drainage characteristics for the portion of the site under development.

The developed drainage areas are defined as follows:

Post-Developed Watershed A – Watershed A takes the runoff from Building 2 and associated car parking lot, and drains through proposed the storm sewer system that connects into the existing outfall to the Hackensack River.

Post-Developed Watershed B

- Detained Watershed B takes the runoff from Building 1, shared truck loading docks, and associated car parking lot, and drains through proposed the storm sewer system that connects into the proposed outfall to the Hackensack River.
- Undetained Watershed B collects the runoff from the 30-ft public access easement along the river and drains west into the Hackensack River.

Post-Developed Watershed C – Watershed C drains south into the unnamed tributary on the southeast corner of the site. The stream eventually flows into the Hackensack River.

3.3. Stormwater Quality

Stormwater runoff from the proposed development needs to be treated for removal of total suspended solids (TSS) per NJDEP requirements. All impervious areas corresponding with vehicular traffic are subject to the TSS removal requirements. Any existing impervious surfaces must be treated to 50% and any proposed impervious areas must be treated to 80%. Table 1 below shows the values used to calculate the Target TSS Removal Rate.

Watershed	Existing Regulated Motor Vehicle Surface (existing impervious cover not including buildings) (ac) ¹	Proposed Regulated Motor Vehicle Surface (proposed impervious cover not including buildings) (ac)	Increase in Impervious Coverage (ac) ²	Target TSS Removal Rate	Total TSS Removal Provided
А	1.71	1.67	0.04	50.7%	51.2%
B (Detained)	0.00	2.33	2.40	80.0%	80.0%

TABLE 1: TARGET TSS REMOVA	AL RATE CALCULATIONS
----------------------------	-----------------------------

¹Impervious Coverage subjected to 50% TSS removal

² Impervious Coverage subjected to 80% TSS removal

To meet the Target TSS removal requirement, the runoff from the car parking lots and truck loading docks will be directed through a series of manufactured treatment devices (MTDs). Runoff from Watershed A, including Building 2's car parking lot and a portion of Industrial Avenue, will be directed through a CONTECH Cascade Separator at the system's outfall. The Cascade Separator is certified by NJDEP to provide 50% TSS Removal. Runoff from detained Watershed B, including Building 1's car parking lot and the shared truck loading court, will be directed through CONTECH Offline Filterra Systems located at each catchment structure in the system. The Filterra units are currently in the NJDEP MTD Certification process and are expected to be certified for 80% TSS removal.

See Appendix A for calculations.

3.4. Stormwater Conveyance

The storm sewer system has been designed using the Rational Method in accordance with N.J.A.C. 5:21-7.2, 7.3, and 7.4. The site was divided into sub-watersheds, each contributing runoff to an individual catch basin. Values for area and runoff coefficient were calculated for each sub-watershed. An average runoff coefficient was chosen based on the percentage of each type of land cover using the following coefficients:

Land Cover	C
Grass/Landscaped (Type D Soil)	0.65
Paved/Roof	0.99

RUNOFF COEFFICIENTS

The Bogota IDF curve, as determined by NOAA Atlas 14 and specified in NJAC 5:21-7.2(c)5, was utilized to determine the storm intensity. A minimum time of concentration of 10 minutes was utilized in the design, as specified in NJAC 5:21-7.2(c)5.

The proposed storm sewer system has been designed for the 25-year storm event.

All storm sewer conveyance calculations are provided in Appendix B of this report. A map titled "Subwatershed Areas" is included in the drawings section of the report.

3.5. Soil Erosion and Sediment Control

The project has been designed to meet all soil erosion and sediment control criteria including provisions for the prevention of soil erosion during construction, as shown on the Soil Erosion & Sediment Control plan and detail sheets.

3.6. Conclusion

In conclusion, the proposed development has been designed in accordance with NJAC 7:8 (NJDEP Stormwater Management Regulations) and the Borough of Bogota and Village of Ridgefield Park Ordinances. The proposed stormwater management design will safely convey all developed runoff from the project with no negative effects on downstream properties or waterways.

FIGURES

anda

2020

Appendix A

Water Quality Analysis

LANGAN	30 Cross Street 130148001			
Designed By SA	Checked By KJW	Date	02/19/21	
	TOTAL TSS REMOVAL RATE SUM	MMARY		
Analys	is Point			
	Calculate the Target TSS Removal Rat	te - Outfall 1		
sed Regulated Motor Service Vehicle Surfa	ace Subject to Water Quality Standards	2.33	acres	
Exi	sting Regulated Motor Vehicle Surface	0	acres	
	Target TSS Removal Rate	50%		
Prop	oosed Regulated Motor Vehicle Surface	2.33	acres	
	Target TSS Removal Rate	80%		
Total TSS Removal Rate = for the Entire Drainage Area	(x) + (0 x 0.5) + (2.33 x 0.8) (+ 2.33)			
	Target TSS Removal Rate =	80.0%		

Calculate the	Target TSS	Removal Rate	- Outfall 2
---------------	------------	--------------	-------------

osed Regulated Motor Service Vehicle Surface Sub	ject to Water Quality Standards	1.71 acres
Existing Re	egulated Motor Vehicle Surface	1.67 acres
	Target TSS Removal Rate	50%
Proposed R	egulated Motor Vehicle Surface	0.04 acres
	Target TSS Removal Rate	80%
Total TSS Removal Rate =	(0 x 0) + (1.67 x 0.5) + (0.04 x 0.8)	
for the Entire Drainage Area	(0 + 1.71)	
	Target TSS Removal Rate =	50.7%

Calculate the Target TSS Removal Rate - Outfall 2

osed Regulated Motor Service Vehicle Surface Sul	bject to Water Quality Standards	1.71 acres
Existing R	egulated Motor Vehicle Surface	1.64 acres
	Target TSS Removal Rate	50%
Proposed I	Regulated Motor Vehicle Surface	0.07 acres
	Target TSS Removal Rate	80%
Total TSS Removal Rate =	0.876	
for the Entire Drainage Area	1.71	
	Target TSS Removal Rate = 5	1.2%

Filterra 300in - 30 Cross Street (2-5-21)NJ DEPPrepared by quikreteHydroCAD® 10.00-20 s/n 05509 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment 48S: 1/2 CB201

Runoff = 0.27 cfs @ 1.15 hrs, Volume= 396 cf, Depth= 0.95"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.04 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area (ac	c) CN	Desc	cription		
*	0.10	5 98				
*	0.01	0 72				
	0.11	5 96	Weig	ghted Aver	age	
	0.01	0 72	8.70	% Perviou	s Ārea	
	0.10	5 98	91.3	0% Imperv	vious Area	
	Tc Le (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0					Direct Entry,

Subcatchment 48S: 1/2 CB201

Summary for Pond 25P: Filterra 6x6

Inflow Area	a =	0.115	ac, 91.30% Impervious,	Inflow Depth = 0.95"	for NJDEP WQ event
Inflow	=	0.27 cfs @	1.15 hrs, Volume=	396 cf	
Outflow	=	0.25 cfs @	1.12 hrs, Volume=	401 cf, Atten= 8%	o, Lag= 0.0 min
Primary	=	0.25 cfs @	1.12 hrs, Volume=	401 cf	

Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 0.12' @ 1.18 hrs Surf.Area= 0.001 ac Storage= 4 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (74.3 - 74.1)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	72 cf	6.00'W x 6.00'L x 2.00'H Prismatoid
Device	Routing	Invert Ou	tlet Devices
#1	Primary	0.00' 300	0.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.25 cfs @ 1.12 hrs HW=0.03' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.25 cfs @ 0.01 fps)

Pond 25P: Filterra 6x6

Hydrograph

Filterra 300in - 30 Cross Street (2-5-21)NJ DEP 2Prepared by quikreteHydroCAD® 10.00-20 s/n 05509 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment 42S: CB202

Runoff = 0.49 cfs @ 1.15 hrs, Volume= 717 cf, Depth= 0.94"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.04 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area (ac)	CN	Description					
*	0.190	98						
*	0.020	72						
	0.210	96	Weighted Aver	age				
	0.020	72	9.52% Perviou	s Ārea				
	0.190	98	90.48% Imperv	vious Area				
	Tc Leng (min) (fee	th set)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description			
	10.0		· · · · ·		Direct Entry,			
				Subcatch _{Hydro}	nment 42S: CB2 ^{graph}	02		
	0.55							Runoff
	0.5		0.49 cfs			N.	DEP 2-hr	
	0.45						fall-4 25"	

Summary for Pond 1P: Filterra 10x6

Inflow Area	a =	0.210	ac, 90.48% Impervious,	Inflow Depth = 0.94	for NJDEP WQ event
Inflow	=	0.49 cfs @	1.15 hrs, Volume=	717 cf	
Outflow	=	0.42 cfs @	1.12 hrs, Volume=	779 cf, Atten=	15%, Lag= 0.0 min
Primary	=	0.42 cfs @	1.12 hrs, Volume=	779 cf	

Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 0.35' @ 1.20 hrs Surf.Area= 0.001 ac Storage= 21 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.0 min (75.1 - 74.1)

Volume	Invert	Avail.Storage	e Storage Description
#1	0.00'	120 c	f 6.00'W x 10.00'L x 2.00'H Prismatoid
Device	Routing	Invert O	utlet Devices
#1	Primary	0.00' 30	0.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.42 cfs @ 1.12 hrs HW=0.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.42 cfs @ 0.01 fps)

Pond 1P: Filterra 10x6

Filterra 300in - 30 Cross Street (2-5-21) Prepared by quikrete

HydroCAD® 10.00-20 s/n 05509 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment 44S: CB205

Runoff 2.04 cfs @ 1.15 hrs, Volume= 2,989 cf, Depth= 0.90" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.04 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area	(ac)	CN	Desc	cription					
*	0. 0	790 120	98 72							
	0. 0. 0. 0.	910 120 790	95 72 98	Weig 13.1 86.8	ghted Aver 9% Pervio 1% Imperv	rage ous Area vious Area	I			
(Tc min)	Length (feet)	า)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı		
	10.0						Direct Entr	ry,		
						Subcato	hment 44S	: CB205		
					1	Hydi	ograph	1	1	1
	Í			20	4 cfs					Runoff
	2-							N.	J DEP 2-hr	
	-						NJD	EP WQ Raiı	nfall=1.25"	
	_			Í				Runoff Area	a=0.910 ac	
	-				K		Rı	unoff Volum	e=2,989 cf	
(cfe)				ſ				Runoff De	epth=0.90"	
Elow	1-	/						Тс	c=10.0 min	
	-						7//////////////////////////////////////		CN=72/98	
	0		· ·	1		2	3	4	5	

Time (hours)

Filterra 300in - 30 Cross Street (2-5-21)NJ DEP 2-IPrepared by quikreteHydroCAD® 10.00-20 s/n 05509 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment 45S: CB206

Runoff = 1.60 cfs @ 1.15 hrs, Volume= 2,349 cf, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.04 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area	(ac)	CN	Desc	cription					
*	0.	620	98							
*	0.	110	72							
	0.	730	94	Weig	ghted Aver	age				
	0.	110	72	15.0	7% Pervio	us Area				
	0.	620	98	84.9	3% Imperv	ious Area				
	Тс	Leng	th	Slope	Velocity	Capacity	Descriptior	I		
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	•			
	10.0						Direct Enti	у,		
						Subcatc	hment 45S	: CB206		
						Hydr	ograph			
	í									Runoff
				1.6	60 cfs					
	-							N.	J DEP 2-hr	
							NJD	FP WQ Raii	nfall=1.25"	
	-			F						
	_							Runom Area	a=0.730 ac	
					K		Rı	unoff Volum	e=2,349 cf	
	(S) 1-			F	1			Runoff De	epth=0.89"	
) MO							Т	=10.0 min	
	Ĕ									
									CN = 72/98	
	-									
				Π						
	-									
	0-		<u> </u>			2	3	4	5	
	Ū			·		– Tir	ne (hours)	•	Ŭ	

Filterra 300in - 30 Cross Street (2-5-21)NJ DEPPrepared by quikreteHydroCAD® 10.00-20 s/n 05509 © 2017 HydroCAD Software Solutions LLC

0.1 0.05

Summary for Subcatchment 47S: CB212

Runoff = 0.65 cfs @ 1.15 hrs, Volume= 944 cf, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.04 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area ((ac)	CN	Desc	ription					
*	0.:	250	98							
*	0.	030	72							
	0.2	280	95	Weig	hted Aver	age				
	0.	030	72	10.71	1% Pervio	us Area				
	0.2	250	98	89.29	9% Imperv	ious Area/				
	Tc (min)	Lengt (feet	h t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	10.0						Direct Entr	/ ,		
						Subcatch	iment 47S:	CB212		
						Hydro	graph			
	1	<u> </u>								Dunoff
	0.7-	Í		0.6	5 cfs					
	0.65	ľ			K			N	J DEP 2-hr	
	0.6	[]					NJE	DEP WQ Rai	nfall=1.25"	
	0.55							Bunoff Are		
	0.5							Runon Are	a-0.200 ac	
	0.45							Runoff Volu	ime=944 cf	
	(ຊິ) 0.4							Runoff D	epth=0.93"	
	≥ ≥ 0.35							Т	c=10.0 min	
	₩ 0.3								CN=72/98	
	0.25									
	0.2									
	0.15	K		<u> </u>						

ż

2

Time (hours)

4

Summary for Pond 43P: Filterra 13x7

Inflow Area =	0.280) ac, 89.29% Impervious,	Inflow Depth = 0.93"	for NJDEP WQ event
Inflow =	0.65 cfs @	1.15 hrs, Volume=	944 cf	
Outflow =	0.64 cfs @	1.14 hrs, Volume=	934 cf, Atten= 1%	6, Lag= 0.0 min
Primary =	0.64 cfs @	1.14 hrs, Volume=	934 cf	-

Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 0.03' @ 1.16 hrs Surf.Area= 0.002 ac Storage= 2 cf

Plug-Flow detention time= 0.7 min calculated for 934 cf (99% of inflow) Center-of-Mass det. time= 0.0 min (74.1 - 74.1)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	182 cf	7.00'W x 13.00'L x 2.00'H Prismatoid
Device	Routing	Invert Out	let Devices
#1	Primary	0.00' 300	.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.63 cfs @ 1.14 hrs HW=0.02' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.63 cfs @ 0.01 fps)

Pond 43P: Filterra 13x7

2021-02-08 CB204205 (TKM 2-26-21)

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 08132 © 2016 HydroCAD Software Solutions LLC

Summary for Pond 68P: Filterra 416sf

Inflow Area =	1.750 ac, 79	9.43% Impervious, Inf	low Depth = 0.86"	for WQ event
Inflow =	3.69 cfs @	1.15 hrs, Volume=	0.125 af	
Outflow =	2.89 cfs @	1.10 hrs, Volume=	0.126 af, Atte	n= 22%, Lag= 0.0 min
Primary =	2.89 cfs @	1.10 hrs, Volume=	0.126 af	
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 7.82' @ 1.22 hrs Surf.Area= 416 sf Storage= 272 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.7 min (75.2 - 74.5)

Volume	Invert	Avail.Stora	age S	torage Description
#1	7.17'	1,248	8 cf 1	6.00'W x 26.00'L x 3.00'H Prismatoid
Device	Routing	Invert	Outlet	Devices
#1	Primary	7.17'	300.00	0 in/hr Exfiltration over Surface area
#2	Secondary	7.82'	6.0' loi	ng x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
Drimon		(1 10 6	$r_{\rm c}$ $HM=7.26'$ (Free Discharge)

Primary OutFlow Max=2.89 cfs @ 1.10 hrs HW=7.26' (Free Discharge) -1=Exfiltration (Exfiltration Controls 2.89 cfs @ 0.01 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=7.17' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

2021-02-08 CB204205 (TKM 2-26-21)

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 08132 © 2016 HydroCAD Software Solutions LLC

Pond 68P: Filterra 416sf

Summary for Subcatchment 5S: Outfall 2

Runoff = 9.69 cfs @ 1.15 hrs, Volume= 14,194.915 cf, Depth= 0.94"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs NJ DEP 2-hr Rainfall=1.25"

	Area	(ac)	CN	De	escrip	tion																		
*	3.	760	98																					
*	0.	400	72																					
	4.	160	96	We	eighte	ed Av	/era	age																
	0.	400	72	9.6	62% F	Pervi	ous	s Āre	ea															
	3.	760	98	90	.38%	Imp	erv	ious	Are	ea														
,	Τc	Leng	th	Slope	e Vo	elocit	ty	Ca	paci	ty	De	scri	iptic	n										
(I	min)	(fee	et)	(ft/ft	i) (ft/sec	C)		(Ct	s)														
	10.0										Dii	rect	En	try,										
								S I.	4	- 1-			-0-	•										
							2	Sub	cat	cn	me	nt :	55:	U	JTTa		2							
									Ну	dro	grap	h												
	- 1	\square																						
	10	9 69 cfs																						Runoff
																			NJ	D	EΡ	2-ł	۱r	
	9-																	R	air	fal	l=1	.2!	5"	
		╱╱╏													E		hof	fΛ	rna	-1	16			
	8-1												.			NUI Kali					. 10	с а Г		
	7												ĸu	no	Πν		ime	e='	14,	194	.91	5 (CT	
-		H														R	uno	off	De	ptr	0=נ	.94	-	
(cfe	6-																		Тс	=1(0.0	mi	n	
Mo	5																			CN	=7	2/9	8	
ш		\mathcal{H}																						
	4-																							
	3																							
		\mathcal{H}																						
	2-																							
	1																							
			()m													////		777	////	////				ł
	0 - 4 0	آ، آر آر آر 1 2	<u></u> 2 3	4 4	6	7.14777 7	8	9	10	 11	12	13	14	15	16	17	18	19	20	21	22	23	24	
									1	Time	(hou	urs)												

Appendix B

Storm Conveyance Analysis

30 CROSS STREET Project No. 130148001

Date 2/19/2021

				ABS	OLUTE	AUTO - W	EIGHTE/	ED 'C'	VALUES	;				
				SOIL	TYPE(S) : URBAN	I LAND	COMF	PLEX (UF	R)				
	TOTAL	IMPER	VIOUS	'C' =	0.99	GRASS	HSG D	'C' =	0.65	GRASS	HSG A	'C' =	0.25	TOTAL
STRUCTURE	AREA (acres)	AREA (acres)	%	'C'	IMPERV 'C'	AREA (acres)	%	'C'	GRASS 'C'	AREA (acres)	%	'C'	GRASS 'C'	WEIGHTED 'C'
STM100														
CB-101	0.16	0.14	90%	0.99	0.89	0.02	10%	0.65	0.07	0.00	0%	0.25	0.00	0.96
CB-102	0.17	0.15	90%	0.99	0.89	0.02	10%	0.65	0.06	0.00	0%	0.25	0.00	0.96
MH-103														
CB-104	0.60	0.57	95%	0.99	0.94	0.03	5%	0.65	0.03	0.00	0%	0.25	0.00	0.97
CB-105	0.51	0.46	90%	0.99	0.89	0.05	10%	0.65	0.06	0.00	0%	0.25	0.00	0.96
CO-106														
RL-106A	0.47	0.47	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
CO-107														
RL-107A	0.46	0.46	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
CB-108	0.18	0.07	39%	0.99	0.39	0.11	61%	0.65	0.40	0.00	0%	0.25	0.00	0.78
CB-109	0.20	0.18	91%	0.99	0.90	0.02	9%	0.65	0.06	0.00	0%	0.25	0.00	0.96
MH-110	0.00	0.04	170/	0.00	0.47		000/	0.05	0.54		00/	0.05	0.00	0.74
CO-111	0.03	0.01	1/%	0.99	0.17	0.03	83%	0.65	0.54	0.00	0%	0.25	0.00	0.71
RL-111A	0.47	0.47	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
MH-112	0.05	0.05	4000/		0.00			0.05			00/	0.05		
RL-112A	0.65	0.65	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
CB-113	0.27	0.13	48%	0.99	0.48	0.14	52%	0.65	0.34	0.00	0%	0.25	0.00	0.81
								-				-		
CB 201	0.23	0.21	01%	0.00	0.00	0.02	0%	0.65	0.06	0.00	0%	0.25	0.00	0.06
CB-201	0.23	0.21	91%	0.99	0.90	0.02	970 10%	0.05	0.00	0.00	0%	0.25	0.00	0.90
MH 203	0.21	0.13	3070	0.33	0.03	0.02	1070	0.00	0.00	0.00	070	0.25	0.00	0.30
CB-204	0.01	0.73	81%	0 00	0.80	0.18	10%	0.65	0.13	0.00	0%	0.25	0.00	0.92
CB-204	0.84	0.66	78%	0.99	0.00	0.10	22%	0.05	0.13	0.00	0%	0.25	0.00	0.92
MH-206	0.01	0.00		0.00	•	0.10	/	0.00	0	0.00	0,0	0.20	0.00	0.01
MH-207														
MH-208														
MH-209														
RL-209A	0.53	0.53	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
MH-210														
RL-210A	0.57	0.57	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
MH-211														
MH-212														
RL-212A	0.55	0.55	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
MH-213			-											
RL-213A	0.61	0.61	100%	0.99	0.99	0.00	0%	0.65	0.00	0.00	0%	0.25	0.00	0.99
CB-214	0.33	0.30	92%	0.99	0.91	0.03	8%	0.65	0.06	0.00	0%	0.25	0.00	0.96
CB-215	0.28	0.25	92%	0.99	0.91	0.02	8%	0.65	0.05	0.00	0%	0.25	0.00	0.96
TOTALS	9.23	8.37	91%	0.99	0.90	0.86	9%	0.65	0.06	0.00	0%	0.25	0.00	

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst		now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	23.879	0.16	4.14	0.96	0.15	3.97	10.0	16.3	4.8	18.98	19.65	7.13	24	1.01	3.93	4.17	5.50	5.76	6.31	11.38	101-100
2	1	137.028	0.20	1.59	0.96	0.19	1.52	10.0	15.4	4.9	7.46	9.76	2.37	24	0.25	4.17	4.51	7.52	7.72	11.38	11.38	109-101
3	2	168.834	0.00	1.39	0.00	0.00	1.33	0.0	14.2	5.1	6.76	9.78	2.15	24	0.25	4.51	4.93	7.79	7.99	11.38	10.21	110-109
4	3	66.107	0.00	1.39	0.00	0.00	1.33	0.0	13.7	5.2	6.86	9.94	2.18	24	0.26	4.93	5.10	8.05	8.13	10.21	9.31	111-110
5	4	105.658	0.00	0.92	0.00	0.00	0.86	0.0	12.6	5.4	4.62	9.72	1.47	24	0.25	5.10	5.36	8.21	8.27	9.31	9.31	112-111
6	5	70.533	0.65	0.65	0.99	0.64	0.64	10.0	10.0	5.9	3.78	5.57	4.81	12	2.08	6.36	7.83	8.30	8.98	9.31	10.00	112A-112
7	4	70.476	0.47	0.47	0.99	0.47	0.47	10.0	10.0	5.9	2.73	5.55	3.48	12	2.07	6.10	7.56	8.21	8.56	9.31	10.01	111A-111
8	1	135.647	0.17	2.39	0.96	0.16	2.30	10.0	14.5	5.0	11.57	11.66	3.68	24	0.35	4.17	4.65	7.52	7.99	11.38	11.25	102-101
9	8	76.975	0.00	2.22	0.00	0.00	2.13	0.0	14.2	5.1	10.86	11.82	3.46	24	0.36	4.65	4.93	8.22	8.46	11.25	13.83	103-102
10	9	50.931	0.00	1.11	0.00	0.00	1.06	0.0	13.7	5.2	5.48	19.62	1.74	24	1.00	5.01	5.52	8.60	8.64	13.83	13.68	106-103
11	10	97.926	0.00	0.64	0.00	0.00	0.60	0.0	12.2	5.4	3.23	19.61	1.03	24	1.00	5.52	6.50	8.69	8.71	13.68	12.86	107-106
12	11	22.335	0.46	0.46	0.99	0.46	0.46	10.0	10.0	5.9	2.67	5.54	3.63	12	2.06	7.50	7.96	8.73	8.79	12.86	14.00	107A-107
13	11	62.521	0.18	0.18	0.78	0.14	0.14	10.0	10.0	5.9	0.82	7.63	0.49	18	0.70	7.00	7.44	8.73	8.73	12.86	11.81	108-107
14	10	22.342	0.47	0.47	0.99	0.47	0.47	10.0	10.0	5.9	2.73	5.60	3.48	12	2.10	6.52	6.99	8.69	8.80	13.68	14.00	106A-106
15	5	112.980	0.27	0.27	0.81	0.22	0.22	10.0	10.0	5.9	1.28	4.53	0.73	18	0.25	5.86	6.14	8.30	8.32	9.31	11.00	113-112
16	9	184.953	0.60	1.11	0.97	0.58	1.07	10.0	11.1	5.6	6.05	9.78	1.93	24	0.25	4.93	5.39	8.60	8.78	13.83	9.39	104-103
17	16	105.013	0.51	0.51	0.96	0.49	0.49	10.0	10.0	5.9	2.87	4.61	1.63	18	0.26	5.39	5.66	8.86	8.97	9.39	9.82	105-104
18	End	24.070	0.23	3.31	0.96	0.22	3.25	10.0	17.7	4.6	20.78	25.10	5.95	30	0.50	3.37	3.49	5.02	5.19	6.85	10.96	201-200
19	18	204.214	0.21	1.31	0.96	0.20	1.29	10.0	13.6	5.2	9.68	19.10	1.98	30	0.29	3.49	4.08	6.38	6.53	10.96	10.93	202-201
20	19	104.226	0.00	1.10	0.00	0.00	1.09	0.0	12.7	5.3	8.81	17.75	1.84	30	0.25	4.08	4.34	6.56	6.61	10.93	10.61	207-202
21	20	73.676	0.00	1.10	0.00	0.00	1.09	0.0	12.1	5.5	5.94	13.51	1.89	24	0.48	4.35	4.70	6.66	6.70	10.61	9.82	208-207
22	21	69.052	0.00	1.10	0.00	0.00	1.09	0.0	11.5	5.6	6.06	9.73	1.95	24	0.25	4.70	4.87	6.71	6.77	9.82	9.40	209-208
Proje	ct File:	2021-0	2-19-100)-WQ.str	n											Number	of lines: 3	6		Run Da	te: 3/3/202	21
NOT			0.00.00																			

NOTES:Intensity = 52.99 / (Inlet time + 9.60) ^ 0.74; Return period =Yrs. 25 ; c = cir e = ellip b = box

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total Cap flow full		Vel	Pipe	Pipe		ev	HGL Elev		Grnd / Rim Elev		Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst		now	Iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
23	22	76.210	0.00	0.57	0.00	0.00	0.56	0.0	10.3	5.8	3.28	9.79	1.08	24	0.25	4.87	5.06	6.83	6.85	9.40	9.40	210-209
24	23	65.005	0.57	0.57	0.99	0.56	0.56	10.0	10.0	5.9	3.31	5.58	4.97	12	2.09	6.06	7.42	6.86	8.20	9.40	10.00	210A-210
25	18	34.487	0.00	1.16	0.00	0.00	1.15	10.0	12.3	5.4	9.08	11.56	2.89	24	0.35	3.49	3.61	6.38	6.46	10.96	11.54	206-201
26	25	77.919	0.00	1.16	0.00	0.00	1.15	0.0	11.9	5.5	6.30	7.29	3.56	18	0.64	3.61	4.11	6.59	6.96	11.54	12.91	211-206
27	26	132.017	0.00	1.16	0.00	0.00	1.15	0.0	11.3	5.6	6.43	6.48	3.64	18	0.51	4.11	4.78	7.16	7.82	12.91	13.75	212-211
28	27	146.371	0.00	0.61	0.00	0.00	0.60	0.0	10.1	5.9	3.54	6.43	2.00	18	0.50	4.78	5.51	8.02	8.24	13.75	11.97	213-212
29	28	19.499	0.61	0.61	0.99	0.60	0.60	10.0	10.0	5.9	3.55	5.59	4.51	12	2.10	6.01	6.42	8.31	8.47	11.97	12.92	213A-213
30	22	65.006	0.53	0.53	0.99	0.52	0.52	10.0	10.0	5.9	3.08	5.56	4.42	12	2.08	5.87	7.22	6.83	7.97	9.40	10.00	209A-209
31	25	256.093	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.86	11.16	0.96	24	0.32	4.11	4.94	6.59	6.64	11.54	7.54	203B-206
32	27	19.457	0.55	0.55	0.99	0.54	0.54	10.0	10.0	5.9	3.20	5.60	4.07	12	2.11	5.28	5.69	8.02	8.16	13.75	14.00	212A-212
33	18	140.880	0.33	0.61	0.96	0.32	0.59	10.0	16.4	4.8	2.79	6.51	1.58	18	0.51	3.49	4.21	6.38	6.51	10.96	11.46	214-201
34	33	342.000	0.28	0.28	0.96	0.27	0.27	10.0	10.0	5.9	1.58	4.99	0.90	18	0.30	4.21	5.24	6.57	6.67	11.46	9.00	215-214
35	End	123.284	0.91	1.75	0.92	0.84	1.61	10.0	10.9	5.7	9.15	9.99	4.37	24	0.26	4.45	4.77	5.53	6.34	10.08	9.00	204-203
36	35	76.210	0.84	0.84	0.92	0.77	0.77	10.0	10.0	5.9	4.54	9.79	1.77	24	0.25	4.77	4.96	6.37	6.41	9.00	9.00	205-204
Proje	ect File:	2021-02	2-19-100	0-WQ.sti	m											Number	of lines: 3	36		Run Da	te: 3/3/202	21
NOT	ES:Inte	ensity = 5	52.99 / (I	nlet time	e + 9.60)	^ 0.74; I	Return p	eriod =Y	′rs. 25;	c = cir	e = ellip	b = box										

DRAWINGS

Project				
30 CR	LANG Engineering and			
BLOCK 113 / LOTS 7, 1 BLOCK 152.01 / 1	Environmental Services, Inc. 989 Lenox Drive, Suite 124 Lawrenceville, NJ 08648			
BOROUGH OF BOGC		KEVIN WEBB PROFESSIONAL ENGINEER	No.	Description
BERGEN COUNTY	T: 609.282.8000 F: 609.282.8001 www.langan.com NJ CERTIFICATE OF AUTHORIZATION No. 24GA27996400	NJ Lic. No. 24GE04075100		REVISIONS

			r	D
			LANGAN Langan Engineering and Environmental Services, Inc.	30 CR
	_		989 Lenox Drive, Suite 124	BLOCK 113 / LOTS 7, 7. BLOCK 152.01 / LC
Description	No.	KEVIN WEBB	Lawrenceville, NJ 08048	BOROUGH OF BOGO
REVISIONS		NJ Lic. No. 24GE04075100	T: 609.282.8000 F: 609.282.8001 www.langan.com NJ CERTIFICATE OF AUTHORIZATION No. 24GA27996400	BERGEN COUNTY

Filename: \\langan.com\data\LAW\data0\130148001\Project Data\CAD\01\SheetFiles\130148001-WB101-0101.dwg Date: 3/10/2021 Time: 16:13 User: hlow Style Table: Langan.stb Layout: WB10

			LANGAN Langan Engineering and Environmental Services. Inc.	30 CR
			989 Lenox Drive, Suite 124 Lawrenceville, NJ 08648	BLOCK 113 / LOTS 7 BLOCK 152.01 /
Description	No.	KEVIN WEBB PROFESSIONAL ENGINEER		BOROUGH OF BOG
REVISIONS		NJ Lic. No. 24GE04075100	T: 609.282.8000 F: 609.282.8001 www.langan.com NJ CERTIFICATE OF AUTHORIZATION No. 24GA27996400	BERGEN COUNTY

TAPERED END CURB R=2944.43' L=11.56' −∆ =0°13'30" CHB=S15°12'55"E CHD=11.56' 73.70 MEET ÁT -EXISTING GRADE ROS SSIREA Prawing Title Drawing No. roject No. 130148001 **ROSS STREET** POST-DEVELOPMENT WB102 02/19/2021 7, 7.01, 7.02, 7.03, 8, 8.01, 8.02 (BOGOTA) I / LOTS 1, 1.01, 2 (RIDGEFIELD PARK) Drawn By WATERSHED PLAN HYL GOTA / VILLAGE OF RIDGEFIELD PARK Checked By

KIW

Filename: \\langan.com\data\LAW\data0\130148001\Project Data\CAD\01\SheetFiles\130148001-WB102-0101.dwg Date: 3/10/2021 Time: 16:18 User: hlow Style Table: Langan.stb Layout: WB102

Sheet

NEW JERSEY

Project				
30 CR	LANDAN Langan Engineering and			
BLOCK 113 / LOTS 7, BLOCK 152.01 /	Environmental Services, Inc. 989 Lenox Drive, Suite 124 Lawrenceville, NJ 08648			Description
BOROUGH OF BOGO		PROFESSIONAL ENGINEER	No.	Description
BERGEN COUNTY	T: 609.282.8000 F: 609.282.8001 www.langan.com NJ CERTIFICATE OF AUTHORIZATION No. 24GA27996400	NJ Lic. No. 24GE04075100		REVISIONS